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LE'ITER TO THE EDITOR 

Finite-size corrections for ground states of the XXZ 
Heisenberg chain in the critical region 

C J Hamer 
Department of Theoretical Physics, Research School of Physical Sciences, The Australian 
National University, GPO Box 4, Canberra, ACT 2601, Australia 

Received 30 September 1985 

Abstract. The methods of de Vega and Woynarovitch are used to calculate finite-size 
corrections to the ground state energy in different sectors for the XXZ Heisenberg chain, 
in the critical region -1 < A < 1. The finite-size scaling amplitude for the mass gap between 
the lowest lying sectors is derived. Using conformal invariance, the scaling dimension is 
extracted for an associated operator, corresponding to the electric field operator in the 
8-vertex model. The conjecture of Baxter and Kelland for the electric field exponent is 
confirmed. 

Recently, a method was given by de Vega and Woynarovitch (1985) for calculating 
the leading-order finite-size corrections to the ground state energy of any model which 
is soluble by the Bethe ansatz. They considered only cases where the mass gap was 
non-zero. Here we apply the treatment to a case where the bulk mass gap is zero, i.e. 
the system is at a critical point. 

Let us consider the X X Z  Heisenberg chain, with Hamiltonian 

and periodic boundary conditions. The total number of sites N will be assumed even, 
for convenience. The Bethe ansatz for this system was discussed by Yang and Yang 
(1966). The total number of down spins rn is conserved, so we may label each sector 
of states by y = 1 - 2m/  N. The Bethe ansatz for the eigenvectors involves a momentum 
pj  for each down spin, and phase factors which involve pairs of p j ,  given by 

The periodic boundary conditions are satisfied if 

where the I ,  are integers or half-odd integers given by 

I , ,  I * .  . . I ,  = - ( - I), - (y) + 1 , .  . . , + (y) 
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for the ground state in each sector. The energy is given by 

j = l  

Let us now restrict our consideration to the case -1 < A  < 1, y = 0. A convenient 
change of variables is then 

A =  -COS y o < y < 7 r  (6) 

and 

p = 2 tan-l[(cot i y )  tanh A]. 

Let 

then (3) becomes 
m 

N+(Aj, ~ / 2 ) = 2 ~ 4 +  4 ( A j - A t ,  Y )  
i = l  

and the energy is 
m 

E = i N  cos y-sin y 4'(Aj,iy) 
J = l  

where the prime denotes differentiation with respect to A. 
At this point, de Vega and Woynarovitch (1985) define the function 

(7)  

(9) 

This function is continuous and monotonically increasing for real A, and at the roots 
of (9) 

ZN(A1) = IllN. (12) 

Its derivative will be denoted 

crri(h) = dZN/dA. (13) 

When N goes to infinity the Ai tend to a continuous distribution with density 
Na,(A), and equation (9) gives rise to a linear integral equation with difference kernel 

This may be solved by Fourier transformation to give 

The energy per site in this limit reduces to 

E Oi d P  1 
fm = lim (-) = t cos y - sin2 y 

N - . r  N J-m cosh ( r p )  [cosh(2yp) -cos y l '  
(16) 
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Now de Vega and Woynarovitch (1985) show that one can derive similar integral 
equations valid for any N. The definitions (1 1) and (13) give 

whence one obtains a linear integral equation for (+,(A) - um(A) leading to the result 

with 

sinh[( T - 2y)X/2]  
{ s i n h ( ~ X / 2 ) + s i n h [ ( ~  -2y)X/2]}' 

For the energy per site fN = E /  N ,  one obtains similarly 

fN-f,=-2.srsin y /:OCdAu,(A)(- 1 "  C 8 ( A - A i ) - u N ( A ) ) .  
N i = i  

Our objective now is to obtain the leading order behaviour of equation (20) for 
large N. For the case with a non-zero mass gap, de Vega and Woynarovitch (1985) 
proceeded to perform a Poisson resummation, and evaluate the leading Fourier 
coefficient by saddle-point methods. In the present case, we can proceed more directly. 
Equation (20) can be rewritten in terms of the variable Z N ( A ) :  

where A N ( 2 )  is the function inverse to ZN(A) .  Use the relationship valid as N goes 
to infinity, from (13) and (15), 

1 
cosh(:) = cos( 2 TZ ) 

then equation (21) can easily be evaluated to give 

?r2 1 
fN -fm - -- sin y ~ .  

N-w 6y N 

This is the required leading order finite-size correction to the ground state energy. 
The discussion given above can be generalised to the case with y non-zero but 

small. One finds that to leading order the finite-size correction is constant in y. It 
follows that the mass gap between the two lowest lying eigenvalues is 

FN = N ( ~ N ( ~ / N ) - ~ N ( O ) )  N-m N ( f 2 2 / N ) - f J O ) )  (24) 

wherefN(y) is the energy per site in sector y. But the right-hand side of this expression 
has already been evaluatedt by Yang and Yang (1966). 

* Our variable f,(y) differs by a factor of 2 from f (A ,  y )  as defined by Yang and Yang. 
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Hence one finds 

The finite-size scaling amplitudes predicted by equations (23) and (25) have been 
checked against numerical results for this model. 

Now Cardy (1984) has shown by conformal invariance that the finite-size scaling 
amplitude of the mass gap for a system at its critical point is related to a critical 
exponent. If the mass gap scales as 

where N is the size of the system, then 

A = 2 r X  (27) 

where X is the scaling dimension of the associated operator. In the Hamiltonian field 
theory framework, there is a problem in choosing the ‘correct’ normalisation for the 
Hamiltonian operator; however von Gehlen et a1 (1985) have pointed out that this 
may be fixed by looking at the energy-momentum dispersion relation. For the present 
case, Johnson er af (1973) showed that the excitation energy is 

AE = ( . i r / y )  sin y(sin ql+sin q2)  (28) 

for a two-‘particle’ excitation with momenta q1 and q2; so the Hamiltonian (1) should 
be divided by a factor ( . r r / y )  sin y to give the correct dispersion relation for massless 
particles in the continuum limit. Hence the scaling dimension corresponding to the 
amplitude (25) is 

x = ( y ) .  

The operator to which this dimension belongs will be one which produces a 
transition between the two states involved, e.g. a ‘transverse field’ h U: added to 
the Hamiltonian (1). Such a Hamiltonian would correspond? to the 8-vertex model 
in an ‘electric’ field (Baxter 1982). A strong conjecture for its critical exponent was 
put forward by Baxter and Kelland (1974): 

P e  =t ( . r r /y  - 1). (30) 
Using scaling relations between the exponents, our result (29) is found to confirm this 
conjecture. 

A more detailed account of these calculations will be given in a later work. 

I would like to thank Professor Rodney Baxter and Professor Michael Barber for some 
helpful conversations on this topic. 
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